Generation of Elliptic Curve Points in Tandem

Armando Faz Hernández\(^1,2\), Julio López\(^1\)

\(^1\)Institute of Computing, University of Campinas
\(^2\)Cloudflare, Inc.

XX Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais – SBSeg 2020
October 14, 2020 – Brazil
Elliptic Curves

Let \mathbb{F} be a finite field, an elliptic curve E over \mathbb{F} is defined by the equation

$$E/\mathbb{F} : y^2 = x^3 + ax + b$$

where $4a^3 + 27b^2 \neq 0$.

The points (x, y) on this curve form an abelian group, denoted $E(\mathbb{F})$, with \mathcal{O} as identity element.
Given a bit string m, we want a hash function H that takes m and produces a point P on the elliptic curve.

$$H: \{0, 1\}^* \rightarrow E(\mathbb{F})$$

$$m \downarrow$$

$$P = H(m)$$

$$H(m) = P \in E(\mathbb{F})$$
Methods for Generating Points

First approach

- Trial-and-Error -> requires randomization.
Methods for Generating Points

First approach

- Trial-and-Error \(\rightarrow\) requires randomization.
- Skalba equations [2] \(\rightarrow\) deterministic, but expensive.

Deterministic Encodings

Rational maps that, given a field element, deterministically produce valid candidates for the coordinates of a point.

\[f: \mathbb{F} \rightarrow E(\mathbb{F}) \]

Examples:

- Icart [3]
- SW [4]
- SWU [5]
- Elligator2 [6]
Let
\[f : \mathbb{F} \rightarrow E(\mathbb{F}) \]
be a deterministic encoding and
\[h : \{0, 1\}^* \rightarrow \mathbb{F} \]
be a cryptographic hash function.

Brier et al. [5] and Farashahi et al. [7] showed that a secure approach to construct a hash to curve function \(H \) is

\[H(m) = f(h_0(m)) + f(h_1(m)) \]

(1)

where \(h_0, h_1 \) are independent hash functions into \(\mathbb{F} \).
Let

\[f : \mathbb{F} \rightarrow E(\mathbb{F}) \] be a deterministic encoding and
\[h : \{0, 1\}^* \rightarrow \mathbb{F} \] be a cryptographic hash function.

Brier et al. [5] and Farashahi et al. [7] showed that a secure approach to construct a hash to curve function \(H \) is

\[H(m) = f(h_0(m)) + f(h_1(m)) \] \hspace{1cm} (1)

where \(h_0, h_1 \) are independent hash functions into \(\mathbb{F} \).

We are interested on optimizing the execution of this function.
Sequential Evaluation of Hashing

Given $m \in \{0, 1\}^*$, calculate $H(m) = f(h_0(m)) + f(h_1(m))$.
Parallel Evaluation of Hashing

\[m \]

\[u_0 = h_0(m) \]

\[u_1 = h_1(m) \]

\[P_0 = f(u_0) \]

\[P_1 = f(u_1) \]

\[P = P_0 + P_1 \]

\[H(m) = P \in E(\mathbb{F}) \]
Parallel Evaluation of Hashing

\[m \]

\[u_0 = h_0(m) \]

\[u_1 = h_1(m) \]

\[P_0 = f(u_0) \]

\[P_1 = f(u_1) \]

\[P = P_0 + P_1 \]

\[H(m) = P \in E(\mathbb{F}) \]
Parallel Evaluation of Hashing

\[m \]

\[u_0 = h_0(m) \]
\[u_1 = h_1(m) \]

\[P_0 = f(u_0) \]
\[P_1 = f(u_1) \]
\[P = P_0 + P_1 \]

\[H(m) = P \in E(\mathbb{F}) \]
Parallel Evaluation of Hashing

\[u_0 = h_0(m) \]
\[u_1 = h_1(m) \]
\[P_0 = f(u_0) \]
\[P_1 = f(u_1) \]
\[P = P_0 + P_1 \]
\[H(m) = P \in E(F) \]
Parallel Evaluation of Hashing

\[
\begin{align*}
 m &
 \quad \Rightarrow \quad u_0 = h_0(m) \\
 &\Rightarrow u_1 = h_1(m) \\
 &\Rightarrow P_0 = f(u_0) \\
 &\Rightarrow P_1 = f(u_1) \\
 &\Rightarrow P = P_0 + P_1 \\
 H(m) &= P \in E(\mathbb{F})
\end{align*}
\]
Vectorized Implementation

SHA-512

- All operations are on 64-bit words.
- A 128-bit vector register carries the calculation of two hashes in parallel.

Prime field arithmetic

- All operations are on 255-bit elements.
- A set of 256-bit vector registers handles two field operations in parallel.

\[
\langle Z_0, Z_1 \rangle = \langle X_0, X_1 \rangle + \langle Y_0, Y_1 \rangle
\]

- Large time savings because exponentiations can run in parallel.

Software Library

- https://github.com/armfazh/fld-ecc-vec
Instance Parameters

- For $E(\mathbb{F}_p)$: we use the edwards25519 curve

\[E/\mathbb{F}_{2^{255}-19} : -x^2 + y^2 = 1 - \frac{121665}{121666} x^2 y^2 \]

- For h_0, h_1: we use SHA-512 hash function as recommended in IETF draft [8].

- For f: we send the output of the Elligator2 map [6] to a point on edwards25519 through the birational equivalence.

- **Point addition** is performed using complete formulas in extended projective coordinates [9].
Latency of hashing 64-byte strings to points on the edwards25519 curve.

<table>
<thead>
<tr>
<th>Description</th>
<th>Operation</th>
<th>Seq<sup>1</sup></th>
<th>Par<sup>1</sup></th>
<th>Δ<sup>2</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hash</td>
<td>$u_i = h_i(m) \mid i=0,1$</td>
<td>3.3</td>
<td>1.8</td>
<td>44.9 %</td>
</tr>
</tbody>
</table>

¹ Entries are 10³ clock cycles of a Core i7-6700K Skylake processor.
² $\Delta = 1 - \frac{\text{Par}}{\text{Seq}}$.
Latency of hashing 64-byte strings to points on the \texttt{edwards25519} curve.

<table>
<thead>
<tr>
<th>Description</th>
<th>Operation</th>
<th>Seq1</th>
<th>Par1</th>
<th>Δ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hash</td>
<td>$u_i = h_i(m)</td>
<td>i=0,1$</td>
<td>3.3</td>
<td>1.8</td>
</tr>
<tr>
<td>Encoding</td>
<td>$P_i = \Phi(f(u_i))</td>
<td>i=0,1$</td>
<td>27.6</td>
<td>15.7</td>
</tr>
</tbody>
</table>

1. Entries are 10^3 clock cycles of a Core i7-6700K Skylake processor.
2. $\Delta = 1 - \frac{\text{Par}}{\text{Seq}}$.
Performance Benchmark on Skylake

Latency of hashing 64-byte strings to points on the edwards25519 curve.

<table>
<thead>
<tr>
<th>Description</th>
<th>Operation</th>
<th>Seq(^1)</th>
<th>Par(^1)</th>
<th>Δ(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hash</td>
<td>(u_i = h_i(m))(\mid i=0,1)</td>
<td>3.3</td>
<td>1.8</td>
<td>44.9 %</td>
</tr>
<tr>
<td>Encoding</td>
<td>(P_i = \Phi(f(u_i)))(\mid i=0,1)</td>
<td>27.6</td>
<td>15.7</td>
<td>43.0 %</td>
</tr>
<tr>
<td>Point addition</td>
<td>(P = P_0 + P_1)</td>
<td>0.5</td>
<td>0.5</td>
<td>0.0 %</td>
</tr>
<tr>
<td>Point to affine</td>
<td>((x, y) = P)</td>
<td>11.9</td>
<td>11.9</td>
<td>0.0 %</td>
</tr>
</tbody>
</table>

\(^1\) Entries are \(10^3\) clock cycles of a Core i7-6700K Skylake processor.
\(^2\) \(\Delta = 1 - \frac{\text{Par}}{\text{Seq}}\).
Latency of hashing 64-byte strings to points on the \texttt{edwards25519} curve.

<table>
<thead>
<tr>
<th>Description</th>
<th>Operation</th>
<th>Seq(^1)</th>
<th>Par(^1)</th>
<th>(\Delta)^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hash</td>
<td>(u_i = h_i(m)\big</td>
<td>_{i=0,1})</td>
<td>3.3</td>
<td>1.8</td>
</tr>
<tr>
<td>Encoding</td>
<td>(P_i = \Phi(f(u_i))\big</td>
<td>_{i=0,1})</td>
<td>27.6</td>
<td>15.7</td>
</tr>
<tr>
<td>Point addition</td>
<td>(P = P_0 + P_1)</td>
<td>0.5</td>
<td>0.5</td>
<td>0.0 %</td>
</tr>
<tr>
<td>Point to affine</td>
<td>((x, y) = P)</td>
<td>11.9</td>
<td>11.9</td>
<td>0.0 %</td>
</tr>
<tr>
<td>Hash to curve</td>
<td>(H(m))</td>
<td>46.0</td>
<td>32.7</td>
<td>28.8 %</td>
</tr>
</tbody>
</table>

\(^1\) Entries are \(10^3\) clock cycles of a Core i7-6700K Skylake processor.

\(^2\) \(\Delta = 1 - \frac{\text{Par}}{\text{Seq}}\).
Analysis of Speedup Factor

\[
\text{Speedup Factor} = \frac{\text{Exec Time Sequential}}{\text{Exec Time Parallel}} \\
\text{Ideal Factor} = 2
\]
Analysis of Speedup Factor

Speedup Factor = \frac{\text{Exec Time Sequential}}{\text{Exec Time Parallel}}

Ideal Factor = 2
Analysis of Speedup Factor

\[
\text{Speedup Factor} = \frac{\text{Exec Time Sequential}}{\text{Exec Time Parallel}}
\]

Ideal Factor = 2
Analysis of Speedup Factor

Speedup Factor = $\frac{\text{Exec Time Sequential}}{\text{Exec Time Parallel}}$

Ideal Factor = 2
Analysis of Speedup Factor

Speedup Factor = \frac{\text{Exec Time Sequential}}{\text{Exec Time Parallel}}

Ideal Factor = 2
Analysis of Speedup Factor

![Graph showing speedup factor vs input length in bytes for different input sizes, comparing Haswell and Skylake architectures. The y-axis represents speedup factor, and the x-axis represents input length in bytes (1, 4, 16, 64, 1K, 4K, 16K, 64K, 256K, 1M). The graph shows that as input size increases, the speedup factor also increases, with a noticeable difference between Haswell and Skylake. The ideal factor is 2.](image)

Speedup Factor = \(\frac{\text{Exec Time Sequential}}{\text{Exec Time Parallel}} \)

Ideal Factor = 2
Analysis of Speedup Factor

![Graph showing speedup factor vs input length in bytes for Haswell and Skylake processors. The y-axis represents speedup factor, and the x-axis represents input length in bytes. The graph compares the execution time (sequential vs parallel) for encoding and hash operations. The ideal factor is 2.]

\[
\text{Speedup Factor} = \frac{\text{Exec Time Sequential}}{\text{Exec Time Parallel}}
\]

Ideal Factor = 2
Summary

• A parallel strategy for hash to curve functions.
• This work covers:
 • Sequential and parallel software implementations.
 • Use of the edwards25519 curve.
 • Optimized performance using AVX2 vector instructions.
• Performance benchmark shows a 1.4 speedup factor for short inputs, a larger factor is observed as the input’s size grows.
Final Remarks

Summary

• A parallel strategy for hash to curve functions.
• This work covers:
 • Sequential and parallel software implementations.
 • Use of the *edwards*25519 curve.
 • Optimized performance using AVX2 vector instructions.
• Performance benchmark shows a 1.4 speedup factor for short inputs, a larger factor is observed as the input’s size grows.

Future Work

• Evaluate performance on hardware implementations.
• Use of alternative vector instruction sets.
• Consider other elliptic curves or deterministic encodings.

Generation of Elliptic Curve Points in Tandem

Armando Faz Hernández1,2, Julio López1

1Institute of Computing, University of Campinas
2Cloudflare, Inc.

XX Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais – SBSeg 2020

October 14, 2020 – Brazil